

Nitrogen Dioxide and Nitrogen Oxides Trends in the UK 2005 to 2016

January 2018

Experts in air quality management & assessment

Document Control

Client	Air Quality Consultants	Principal Contact	Prof. Duncan Laxen

Job Number	
------------	--

Report Prepared By:	Prof. Duncan Laxen, Georgia Zygmunt and Kieran Laxen
---------------------	--

Document Status and Review Schedule

Report No.	Date	Status	Reviewed by
	16 January 2018	Final	Dr Ben Marner (Technical Director)

Unless otherwise agreed, this document and all other Intellectual Property Rights remain the property of Air Quality Consultants Ltd.

In preparing this report, Air Quality Consultants Ltd has exercised all reasonable skill and care. The Company operates a formal Quality Management System, which is certified to ISO 9001:2008, and a formal Environmental Management System, certified to ISO 14001:2015. QMF 08.

When issued in electronic format, Air Quality Consultants Ltd does not accept any responsibility for any unauthorised changes made by others.

When printed by Air Quality Consultants Ltd, this report will be on Evolve Office, 100% Recycled paper.

Air Quality Consultants Ltd 23 Coldharbour Road, Bristol BS6 7JT Tel: 0117 974 1086 1 Burwood Place, London W2 2UT Tel: 020 3873 4780 aqc@aqconsultants.co.uk

Registered Office: 23 Coldharbour Road, Bristol, BS6 7HT Companies House Registration No: 2814570

Contents

I

1	Introduction	2
2	Methodology	3
3	Results	6
4	Summary	12
5	Tables	13
6	Figures	17
7	References	33
8	Appendices	34
A1	Included sites	
A2	Plots for Individual Sites	46

1 Introduction

- 1.1 There is considerable current interest in exposure to nitrogen dioxide (NO₂) in the UK. This is driven largely by the failure of vehicle emission controls imposed through Euro standards to deliver the improvements expected for diesel vehicles. This was initially brought to light by the analysis of trends in concentrations, which did not fall as expected from the introduction of 'tighter' emission standards¹ during the 2000s (Carslaw et al., 2011) (Carslaw and Rhys-Tyler, 2013). This report extends previous analyses of trends to see what can be learnt about the continued delivery of 'tighter' Euro standards over the 11-year period from 2005 to 2016¹, as well as changes to emissions from other sectors. It takes account of geographical variations across the UK, as well as monitor setting. Clearly sites near to roads will give the clearest information on the role of vehicle emissions, while rural sites will include the role of other sources, such as industry and power stations, as well as the contribution long-range transport from Europe-wide sources, the trends for which will be different to those of UK road traffic. Urban sites will be intermediate between road and rural sites.
- 1.2 The UK has an extensive national network of automatic monitoring sites measuring NO₂ and nitrogen oxides (NOx), including the Automatic Urban and Rural Network (AURN) and some affiliated sites, mainly owned and operated by local authorities. In addition, there are numerous other sites operated by local authorities, many of which are linked into networks for data reporting. This report draws together data from as many of these networks as was practicable at the time of data collection.
- 1.3 The openair software package (Carslaw and Ropkins, 2012) has been used to analyse the data for trends for a range of categorisations of the sites. The analysis has covered both NOx and NO₂. The focus is on trends across sites, rather than an analysis of trends at specific sites.
- 1.4 The data in the tables and figures are critical to understanding the text. To facilitate the ability to look at the text, tables and figures at the same time, two separate pdf documents have been created, one for the tables and one for figures, which can be opened at the same time as the main report (available at <u>http://www.aqconsultants.co.uk/Resources/Download-Reports.aspx)</u>.

¹ Light Duty Vehicles: Euro 3 in 2000, Euro 4 in 2005, Euro 5 in 2009/11, Euro 6 in 2014. Heavy Duty Vehicles: Euro III in 2000, Euro IV 2005, Euro V in 2008, Euro VI in 2013

2 Methodology

- 2.1 The approach can be described according to the following three steps:
 - data compilation;
 - data processing; and
 - data analysis.

Data compilation

- 2.2 Hourly-mean NO₂ and NOx concentrations from 2005 to 2016 (inclusive) have been collated from the following air quality networks:
 - Automatic Urban and Rural Network (<u>https://uk-air.defra.gov.uk/networks/find-sites</u>)
 - London Air Quality Network (Kings College London) (http://www.londonair.org.uk/)
 - Scottish Air Quality Network (<u>http://www.londonair.org.uk/</u>)
 - Kent Air (http://www.kentair.org.uk/)
 - Welsh Air Quality (<u>http://www.welshairquality.co.uk/</u>)
 - Sussex Air (<u>http://www.sussex-air.net/</u>)
 - UK Air Quality (<u>http://www.ukairquality.net/</u>)
- 2.3 A total of 247 sites have been identified for further consideration. Various criteria have then been applied to define an appropriate data set of 156 sites for further analysis of the trends, as set out below.

Data processing

- 2.4 To help ensure a robust outcome of the analyses, sites have been excluded from the analysis based on the following criteria:
 - sites with no data for both 2005 and 2006 and/or for both 2015 and 2016; and
 - sites with data capture for the full 11 years of less than 75%².
- 2.5 For some sites, data are made available on more than one website. This applies in particular to Defra's AURN sites, which in London are also included on the London Air website operated by King's College London (KCL). Where duplicate sites have been identified, the approach has been to retain the results made available on the Defra website.

² Six additional roadside sites with a lower data capture, but a good spread across the study period, were included in the analysis.

- 2.6 Sites are categorised as follows: Industrial, Kerbside, Roadside, Rural Background, Suburban and Urban Background. For the purpose of this analysis, Industrial sites have been removed from the dataset, as they are designed to reflect the influence of local industrial sources and will therefore not be representative of more general exposure. In one case, the 'urban background' AURN site 'London Hillingdon' has been reclassified as a roadside site, as it is around 30 m from the busy M4 motorway.
- 2.7 The sites included in the analyses and their features are set out in Table A1 in Appendix A1, while those excluded are set out in Table A2. A number of sites included provisional data for 2016 at the time of data collection; examination of the results for these sites indicates that it is appropriate to retain them in the analyses.

Data analysis

2.8 The *openair* package used in this report is open-source software based on R (Carslaw and Ropkins, 2012)³ which provides a consistent set of tools for analysing and understanding air pollution data. Two particular components of *openair* have been used, a smooth trend fit to the data and a statistical TheilSen linear fit. In each case, monthly mean data have been used in the analysis, with data only included when the 1-hour mean data capture for the month exceeds 75%.

smoothTrend

2.9 The smoothTrend function in *openair* helps check the linearity of a trend. Monthly averages are calculated from the hourly concentrations and the Generalized Additive Model finds the most appropriate level of smoothing. The plots show the smoothed trend line fitted to the monthly data, along with the 95% confidence interval, which is shown by the shading around the trend line.

TheilSen

2.10 The TheilSen function in *openair* provides an analysis of the statistical significance of trends in air pollution data and yields accurate confidence intervals, that are resistant to outliers. The plots show the best fit linear trend line, together with the lines representing the 10% confidence interval (p=0.1). The plots also give the trend (in this case as a percentage change in concentration per year) and the associated 10% confidence interval values and the significance of the trends (where the confidence interval values both have the same sign, either both positive or both negative). The significance of the trend is also shown, as follows: *** for p=0.001, ** for p=0.01, * for p=0.05 and ⁺ for p=0.1.

Spatial Analysis

2.11 The geographical analysis has been carried out using GIS mapping.

³ Further information at: <u>http://www.openair-project.org/Default.aspx</u>

Categorisation of Trends

- 2.12 The trends, in % per yr, for each site, from the TheilSen analysis, have been categorised into:
 - significant positive trend (a significant increase in concentrations over the 11 years);
 - no significant trend (no significant change concentrations over the 11 years); and
 - significant negative trend (a significant decrease in concentrations over the 11 years).
- 2.13 In addition, the significant trends have been categorised into those of <2% per year and those >2% per year, to reflect the magnitude of the changes, as well as their significance.

Presentation of Trends

- 2.14 All trends are presented as values in percent per year (%/yr) rather than microgrammes per cubic metre per year (μg/m³/yr), to make comparisons between sites with different concentrations more meaningful.
- 2.15 The focus of the analysis is on grouped sites, to strengthen the confidence in the findings. This will help overcome unusual results due to specific features of some of the monitoring sites, e.g. sites may be affected by local measures that have changed traffic flows or changed the proportion of buses on the road(s) near to the site. It is recognised that specific features near to a site are more likely to affect roadside/kerbside sites than urban background or rural sites.
- 2.16 The analysis covers:
 - comparison of trends by site type, based on three groupings:
 - **Road**: kerbside and roadside;
 - **Urban**: urban centre, urban background suburban; and
 - **Rural**: sites away from urban and road traffic sources.
 - the pattern of geographic trends across the UK; and
 - comparison of **trends by NOx concentrations**, which is broadly a surrogate for fresh emissions of NOx, but also related to site type and part of the country. The sites have been grouped into four categories by the mean NOx concentration over the 11-year period:
 - NOx >120 mg/m³
 - NOx 80-120 mg/m³
 - NOx 40-80 mg/m³
 - NOx $<40 \text{ mg/m}^3$.

3 **Results**

3.1 The trend analysis has been carried out for each of 156 monitoring sites, for both NO₂ and NOx concentrations, with the results set out in Appendix A2. The results are summarised in a series of Tables in Section 4 and in Figures in Section 5. The observations are set out below.

Overall Trends across the UK

- 3.2 The overall pattern of trends in NO₂ and NOx across all site types and all geographic areas is set out in Table 1. There is a significant downward trend in both NO₂ and NOx over the period 2005 to 2016, with the overall magnitudes of the reductions being essentially the same for both pollutants, at 1.50% per year and 1.48% per year respectively.
- 3.3 These overall reductions for the period 2005 to 2016 may be compared with those reported by Carslaw *et al* (2011) over the period 2004 to 2009, which were "best described as having been weakly downward". The trends in NO₂ over this period were reported as being "decreases in the range 0.5 to 1% per year, although rural sites (showed) a greater decrease ~1.4% per year". In contrast to the present study, the NOx trends reported by Carslaw *et al* (2011) were higher than those of NO₂, being reported as decreases of 1 to 2% per year, compared with the 0.5 to 1% per year for NO₂, although subsequent work by Font & Fuller (2015) examining trends in London showed that "Between 2010 and 2014, sites that exhibited decreasing (trends in NOx and NO₂) showed an approximate 1:1 ratio (for the NOx and NO₂ trends)", which is consistent with the current study. Carslaw and Rhys-Tyler (2013) subsequently reported the trends for 23 roadside sites in London as being downward at 1.07% per year for NOx and 0.59% per year for NO₂ over the period 2003 to 2012. The overall UK trends for 2005 to 2016 are thus slightly higher than those previously reported (but important qualifications are provided in subsequent sections which disaggregate the trends).
- 3.4 The smoothTrend plots are shown in Figure 1 for NO₂ and Figure 2 for NOx, while the TheilSen plots are shown in Figure 3 for NO₂ and Figure 4 for NOx. The smoothTrend results show a slight indication of an inverse S-shaped pattern for NO₂ and NOx with a flattish period from 2005 to 2009, a steeper downward trend from 2010 to 2014, then a flattening out in 2015 to 2016.
- 3.5 The current understanding of real-world emissions from diesel vehicles leads to the expectation of a minimal downward trend in the early years, 2005 to 2013, with a steepening downward trend in the last few years (since Euro VI HDVs started to enter the fleet from around 2013 and Euro 6 cars around 2015)⁴. The analysis does not, however, show this expected pattern. Somewhat

⁴ A fixed date does not apply in practice, hence the use of 'around'. There are different dates for new models and existing models, and there may be an element of anticipation by suppliers that might lead to early introduction, prior to the legal deadline.

surprisingly, there appears to be a flattening out of the downward trend in recent years, when it would be expected to be accelerating. This may, however, be due to the influence of meteorological conditions, which will cause variations from year to year. In this case, it is possible that 2016 is a higher pollution year due to meteorological conditions and/or 2015 is a lower pollution year. Once 2017 data become available it will be possible to see if this apparent plateau remains, or is smoothed out. Further analysis of the pattern is provided by site type in the next section, including recognition of the role of trends in other sources of NOx.

- 3.6 It is considered somewhat surprising that the percentage reductions are not smaller for NO₂ than for NOx, especially at higher concentrations, as there is a non-linear relationship between NO₂ and NOx, which is most evident at higher NOx concentrations (AQEG 2004). It would thus be expected that the percentage reduction in NO₂ should be less than that of NOx. (This is examined as a function of NOx concentrations in paragraph 3.17, with a less clear pattern apparent). The departure from expectation may however be due to the role of changing fraction of primary NO₂ emissions, which is known to have varied over this period, although primary NO₂ will mainly affect the concentrations at Road sites.
- 3.7 The overall downward trends across the UK do hide important differences for individual sites. This is illustrated in Figure 5 and Figure 6 where:
 - a small number of sites (~3% for NO₂ and ~4% for NOx) show significant increases over the 11 years;
 - around a third of the sites (~31% for NO₂ and ~36% for NOx)) show no significant trends over the 11 years; and
 - around two thirds of the sites (66% for NO₂ and 60% for NOx) show significant downward trends.

Overall Pattern of Trends across the UK by Site Type

- 3.8 The overall trends for NO_2 and NOx for the three site types: Road, Urban and Rural, are set out in Table 1. As with the overall trend across all UK sites, there is an overall:
 - significant downward trend in both NOx and NO₂, for all site types, with the overall magnitudes of the reductions being similar for both pollutants; while
 - the overall percentage reductions for both NO₂ and NOx are greater at Rural sites (~2.5-2.6% per year) than at Urban sites (~1.5-1.7% per year) and Road sites (~1.6% per year)⁵.

⁵ When interpreting these results, it should be recognised that there are fewer sites incorporated in the rural category, which may increase the uncertainty of the overall trend for rural sites. There is, however, consistency in the pattern of a greater reduction in rural sites across each of the geographic areas, as discussed in the next section, which does give confidence in the observation.

- 3.9 Figure 7 to Figure 11 again show how these overall trends hide differences for individual sites, but confirm that there are more Rural sites with significant downward trends and that there is little difference between trends for NO₂ and NOx.
- 3.10 The smooth trends by site type are set out for NO_2 in Figure 12 to Figure 14 and for NOx in Figure 15 to Figure 17. They show:
 - essentially a linear downward trend for both NO₂ and NOx at Road sites, and for NO₂ at Urban sites, over the 11 years; and
 - a slight indication of an inverse S-shaped pattern for NO₂ and NOx at Rural sites, and for NOx at Urban sites, with a flattish period from 2005 to 2009, a steeper downward trend from 2009 to 2014, then a flattening out in 2015 to 2016. This is similar to the overall trend for all UK sites discussed in the previous section.
- 3.11 The TheilSen trend analyses, underpinning the results by site type in Table 1, are set out in Figure 18 to Figure 20 for NO₂ and Figure 21 to Figure 23 or NOx.

Overall Trends by Geographic Area

- 3.12 The overall patterns of significant downward trends also hide some important differences between different parts of the country. This is evident in Figure 24 and Figure 25, which show the results for trends in NO₂ and NOx respectively for all individual sites across the UK. It is evident that there are some sites with significant upward trends, some with no significant trends and some with downward trends (see also paragraph 3.9 above). Based on a visual examination of the data, there appear to be different overall patterns in different parts of the UK. Three areas have been defined:
 - 1) Scotland and Northern Ireland,
 - 2) Central and Northern England and North Wales,
 - 3) Southern England and Southern Wales
- 3.13 The overall results for these three areas are set out in Table 2, with the trends shown in Figure 26 to Figure 28 for NO_2 and Figure 29 to Figure 31 for NOx. It is evident that there are
 - significant overall downward trends for both NO₂ and NOx in Areas 1 and 3; but
 - no significant trends for either NO₂ or NOx in Area 2.

This pattern applies to all site types in the three areas as shown in Table 3, so it is not a feature of the mix of sites. It thus appears that there are clear regional differences in overall trends for both NO_2 and NOx in Central and Northern England and North Wales.

- 3.14 Trends for NO₂ and NOx in Areas 1 and 3 are very similar in magnitude, and so it is not clear why in Area 2 there are no overall significant downward trends. The differences may reflect different patterns of vehicle turnover and hence age profile, differences in traffic growth, changes in congestion between the areas, different contributions from other NOx sources, including power stations, industry and domestic sources, and different roles for the long-range transport of NOx and NO₂ from elsewhere in Europe. It is also possible that the differences are not systematic, instead relating to a random coincidence of differently-affected sites in each area, but this seems unlikely, given the large number of sites considered and the consistency of the finding across site types.
- 3.15 The general absence of significant downward trends in Central and Northern England and North Wales will be an important consideration for the development of clean air plans for these areas. Measures to bring about improvements may need to be more stringent than in the other two areas.
- 3.16 The pattern of trends across London and the South East of England is shown in greater detail in Figure 32 for NO₂ and Figure 33 for NOx. There is no clear spatial pattern, although there does appear to be a tendency for greater reductions along the Thames Estuary to the east of central London, and more trends that are not significant on the western side of Greater London, including a significant increase in NO₂ at the site near the M4 in Hounslow.

Trends as a Function of NOx Concentration

- 3.17 Trends in both NO₂ and NOx are summarised for sites grouped by the site NOx concentration in Table 4. The pattern is consistent with that shown for site type in Table 1, with the greatest reductions at sites with low NOx concentrations (NOx <40 μ g/m³). It is noted that for the high NOx sites (NOx >120 μ g/m³) the downward trend in NOx is smaller (0.99% per year) than that for NO₂ (1.45% per year), whereas at all other sites the trends in NOx are greater than those for NO₂. The latter is what would be expected given the non-linear relationship between NO₂ and NOx, while the former could be suggestive of a reduction in the fraction of primary NO₂ emissions, which would have a greater effect at sites with a high proportion of fresh emissions, i.e. sites close to large roads.
- 3.18 The relationships with NOx concentration are shown in greater detail in Table 5, where the results are set out for the three geographic areas. Greater care should be exercised in interpreting these findings, as there are fewer sites in some of the grouping; in particular there is only one site in each of the higher NOx concentration groupings for Area 2, and the results for these two grouping should not be interpreted as reflecting more generalised patterns.
- 3.19 In Southern England and Southern Wales, the trend is downward irrespective of the NOx concentration for both NO₂ and NOx, although for NOx sites in the 40-80 μ g/m³ grouping, the NOx trend is only marginally significant. In Scotland and Northern Ireland, the sites in the 40-80 μ g/m³

grouping have no significant trend for either NO_2 or NOx; in terms of air quality assessments this may be of less significance, as these sites have NO_2 concentrations below the objective for NO_2 .

Comparison with Predicted Trends

Roadside

3.20 The technical guidance provided to local authorities in 2009 (LAQM.TG(09)) included a table that projected roadside concentrations of NO₂ (Box 2.1). This predicted annual reductions of 3.5% to 4.5% per year over the period 2006 to 2016. With the publication of the updated guidance in 2016 Defra changed from a fixed table to one on the Defra website that could be updated from time to time. The latest version was updated towards the end of 2017⁶, and predicts annual reductions of NO₂ at roadside sites of 3.9% per year from 2015 to 2016 and 4.3% per year from 2016 to 2017. These projections contrast with the ~1.6% reduction at Road sites in this study (Table 1) across the full 11 years for both NO₂ and NOx, with no evidence in the smoothTrend plots that the reduction has become steeper in recent years (Figure 12 and Figure 15). This, together with the absence of significant trends in Central and Northern England and North Wales, raises questions about the appropriateness of the projections used to generate the roadside projections in Defra's advice to local authorities.

Rural and Urban

- 3.21 Trends in concentrations can also be derived from the Defra background maps⁷. The percentage changes in NO₂ and NOx for each of the years 2015 to 2016 and 2016 to 2017 have been calculated for each of the three geographic areas, as averages for all of the background grid squares. The results are:
 - Area 1 2015 to 2016: a 2.9% per year reduction in NO₂ from and a 3.0% reduction for NOx;
 - Area 1 2016 to 2017: a 3.0% per year reduction in NO₂ from and a 3.1% reduction for NOx;
 - Area 2 2015 to 2016: a 3.0% per year reduction in NO₂ from and a 3.2% reduction for NOx;
 - Area 2 2016 to 2017: a 3.1% per year reduction in NO₂ from and a 3.3% reduction for NOx;
 - Area 3 2015 to 2016: a 2.8% per year reduction in NO₂ from and a 3.0% reduction for NOx;
 - Area 3 2016 to 2017: a 2.8% per year reduction in NO₂ from and a 3.0% reduction for NOx.
- 3.22 The projected reductions for NO₂ at background (Rural and Urban) sites are ~3% per year between 2015 and 2016, which is greater than the observed trend for the 2005 to 2016 period across Rural and Urban sites across the whole of the UK, ~ 1.5 to 2.6% per year (Table 1) and does not reflect the absence of significant downward trends over the 2005 to 2016 period at Rural

l

⁶ <u>https://laqm.defra.gov.uk/tools-monitoring-data/roadside-no2-projection-factor.html</u>

⁷ <u>https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html</u>

and Urban sites in Area 2 (Table 3). While the latter results are the trends across an 11-year period, the evidence from the smoothTrend plots shows no evidence of a steepening in recent years. This raises questions about the appropriateness of the projections used to generate the future year background maps.

4 Summary

- 4.1 A detailed analysis of trends in NO₂ and NOx concentrations at 156 automatic monitoring sites across the UK over an 11-year period, 2005-2016, has been carried out.
- 4.2 The results show:
 - an overall downward trend for NO₂ and NOx of ~1.5% per year;
 - smoothTrend fits to the data that suggest an inverse S-shaped pattern for NO₂ and NOx with a flattish period from 2005 to 2009, a steeper downward trend from 2010 to 2014, then a flattening out in 2015 to 2016;
 - around two thirds of the sites with a significant downward trend, around a third showing no significant trend and a small percentage ~3 to 4% having a significant increasing trend;
 - a greater downward trend in both NO₂ and NOx across Rural sites than at Urban and Road sites;
 - an important geographical pattern to the trends, with no significant overall trend in either NO₂ or NOx across sites in Central and Northern England and North Wales, but significant reductions for both pollutants in other grouped regions;
 - projected trends for NO₂ and NOx provided by Defra for local authority use have more significant downward trends than those identified from the analysis of monitoring data. This must raise questions about the appropriateness of the projections provided by Defra.
- 4.3 In summary, while there are optimistic signs of an overall reduction in NO₂ and NOx concentrations across the UK as a whole, over the 11-year period, 2005 to 2016, there are important spatial differences which may have implications for air quality management. Furthermore, the evidence is that the projections provided to air quality practitioners have been, and possibly continue to be, over-optimistic. Further work is clearly required to understand these findings in order to ensure that the measures being put in place to improve air quality will deliver the expected reductions in concentrations. It will also be interesting to revisit trends in NO₂ and NOx once the ratified data for 2017 become available.

5 Tables

I

Tables

Table 1:	Summary Results by for All UK and by Site Type1	4
Table 2:	Summary Results for all Site Types for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales	4
Table 3:	Summary Results by Site Type for 3 Areas 1) Scotland and Northern Ireland, 2 Central & Northern England + North Wales, 3) Southern England and Southern Wales	ń
Table 4:	Summary Results by NOx Concentration for All UK Sites 1	5
Table 5:	Summary Results by NOx Concentration for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales	6

		N	O ₂	NOx	
Name	Number of Sites	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)
	All UK				
All UK	156	34.46	-1.50***	75.28	-1.48***
By Site Type					
Road all UK	76	45.54	-1.60***	112.89	-1.60***
Urban all UK	63	27.60	-1.48***	46.36	-1.74***
Rural all UK	17	10.34	-2.59***	14.28	-2.47***

Table 1: Summary Results by for All UK and by Site Type

^a Mean of all years and all sites

Table 2:Summary Results for all Site Types for 3 Areas 1) Scotland and Northern
Ireland, 2) Central & Northern England + North Wales, 3) Southern England and
Southern Wales

		NO ₂		NOx	
Area	Number of Sites	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)
Area 1 - Scotland and Northern Ireland	27	30.28	-1.56***	78.75	-1.51***
Area 2 - Central & Northern England + North	25	24.89	-0.11 (n/s)	45.62	-0.04 (n/s)
Area 3 Southern England and Southern Wales	104	36.83	-1.66***	80.07	-1.61**

Mean of all years and all sites

а

Table 3:Summary Results by Site Type for 3 Areas 1) Scotland and Northern Ireland, 2)Central & Northern England + North Wales, 3) Southern England and Southern
Wales

		N	D ₂	NOx	
Name	Number of Sites	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)	Mean Conc (mg/m³) ª	Mean Trend (%/yr)
	Area 1 -	Scotland and	Northern Irela	nd	
Road	18	39.02	-1.48***	107.24	-1.48***
Urban	6	22.87	-2.32**	39.36	-2.32**
Rural	3	5.80	-3.68***	8.24	-3.83***
Area 2 - Central & Northern England + North Wales					
Road	5	32.49	-0.53 (n/s)	75.35	+0.15 (n/s)
Urban	15	26.80	-0.51 (n/s)	45.39	-1.07 (n/s)
Rural	5	11.03	-0.59 (n/s)	15.65	-0.67 (n/s)
	Area 3 Sout	hern England a	and Southern	Wales	
Road	53	49.63	-1.68***	121.47	-1.58***
Urban	42	28.66	-1.78***	47.87	-2.0*
Rural	9	9.62	-2.75***	12.86	-2.44***

^a Mean of all years and all sites

Table 4: Summary Results by NOx Concentration for All UK Sites

Site NOx		NO ₂		NOx	
Concentration (mg/m ³) ^a	Number of Sites	Mean Conc (mg/m³) ^a	Mean Trend (%/yr)	Mean Conc (mg/m³) ª	Mean Trend (%/yr)
NOx >120 all UK	25	66.91	-1.45***	182.27	-0.99**
NOx 80 - 120 all UK	31	42.89	-1.59***	97.51	-2.05***
NOx 40-80 all UK	52	30.59	-1.37***	57.08	-1.50*
NOx <40 all UK	48	16.30	-1.95***	24.90	-2.16***

^a Based on mean site concentration for all years

^b Mean of all years and all sites

Table 5:Summary Results by NOx Concentration for 3 Areas 1) Scotland and Northern
Ireland, 2) Central & Northern England + North Wales, 3) Southern England and
Southern Wales

Site NOx		N	O ₂	N	Эх
Concentration (mg/m ³) ^a	Number of Sites	Mean Conc (mg/m³) ^b	Mean Trend (%/yr)	Mean Conc (mg/m³) ^b	Mean Trend (%/yr)
	Area 1 -	Scotland and	Northern Irela	nd	
NOx >120	4	61.56	-1.28***	200.25	-1.21*
NOx 80 - 120	7	35.95	-2.24***	90.26	-2.45***
NOx 40-80	9	26.36	-0.89 (n/s)	54.98	-0.88 (n/s)
NOx <40	7	9.67	-3.4***	14.73	-3.32***
Area 2 - Central & Northern England + North Wales					
NOx >120	1	53.12	+3.56***	149.34	+3.74***
NOx 80 - 120	1	39.71	-2.32***	102.43	-0.67 (n/s)
NOx 40-80	9	31.70	-0.83 (n/s)	56.93	-1.28+
NOx <40	14	16.76	-0.36 (n/s)	24.89	-0.91 (n/s)
	Area 3 Sout	hern England a	and Southern	Wales	
NOx >120	20	69.66	-1.58***	184.38	-1.11**
NOx 80 - 120	23	45.43	-1.29***	99.27	-1.89***
NOx 40-80	34	30.41	-1.71***	55.79	-1.77*
NOx <40	27	15.55	-2.27***	22.75	-2.33***

^a Based on mean site concentration for all years

^b Mean of all years and all sites

6 Figures

I

Figures

Figure 1: Overall NO ₂ Trend across All UK Sites and SmoothTrend Fit19
Figure 2: Overall NOx Trend across All UK Sites and SmoothTrend Fit
Figure 3: Overall NO $_2$ Trend across All UK Sites and TheilSen Fit (% per yr)20
Figure 4: Overall NOx Trend across All UK Sites and TheilSen Fit (% per yr) 20
Figure 5: Significance of NO ₂ Trends at All UK Sites21
Figure 6: Significance of NOx Trends at All UK Sites
Figure 7: Significance of NO_2 and NO_x Trends at All UK Roadside Sites
Figure 8: Significance of NO_2 and NO_x Trends at All UK Urban Sites
Figure 9: Significance of NO $_2$ and NOx Trends at All UK Rural Sites
Figure 10: Significance of NO ₂ Trends at All UK Sites23
Figure 11: Significance of NOx Trends at All UK Sites23
Figure 12: Overall NO ₂ Trend across All UK Road Sites and SmoothTrend Fit24
Figure 13: Overall NO ₂ Trend across All UK Urban Sites and SmoothTrend Fit24
Figure 14: Overall NO ₂ Trend across All UK Rural Sites and SmoothTrend Fit24
Figure 15: Overall NOx Trend across All UK Road Sites and SmoothTrend Fit25
Figure 16: Overall NOx Trend across All UK Urban Sites and SmoothTrend Fit25
Figure 17: Overall NOx Trend across All UK Rural Sites and SmoothTrend Fit25
Figure 18: Overall NO ₂ Trend across All UK Road Sites and TheilSen Fit (% per yr)26
Figure 19: Overall NO $_2$ Trend across All UK Urban Sites and TheilSen Fit (% per yr) . 26
Figure 20: Overall NO ₂ Trend across All UK Rural Sites and TheilSen Fit (% per yr)26
Figure 21: Overall NOx Trend across All UK Road Sites and TheilSen Fit (% per yr)27
Figure 22: Overall NOx Trend across All UK Urban Sites and TheilSen Fit (% per yr).27
Figure 23: Overall NOx Trend across All UK Rural Sites and TheilSen Fit (% per yr)27
Figure 24 Significance of NO ₂ Trends at All UK Sites and for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales
Figure 25: Significance of NOx Trends at All UK Sites and for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales
Figure 26: Overall NO ₂ Trend across All Sites in Scotland and Northern Ireland, with TheilSen Fit (% per yr)
Figure 27: Overall NO ₂ Trend across All Sites in Central and Northern England and Northern Wales, with TheilSen Fit (% per yr)

•	Overall NO ₂ Trend across All Sites in Southern England and Southern ales, with TheilSen Fit (% per yr)	30
	Overall NOx Trend across All Sites in Scotland and Northern Ireland, with neilSen Fit (% per yr)	31
	Overall NOx Trend across All Sites in Central and Northern England and orthern Wales, with TheilSen Fit (% per yr)	31
	Overall NOx Trend across All Sites in Southern England and Southern ales, with TheilSen Fit (% per yr)	31
Figure 32:	Significance of NO ₂ Trends at All Sites in London and SE England	32
Figure 33:	Significance of NO _x Trends at All Sites in London and SE England	32

I

Figure 1: Overall NO₂ Trend across All UK Sites and SmoothTrend Fit

Figure 2: Overall NOx Trend across All UK Sites and SmoothTrend Fit

Figure 3: Overall NO₂ Trend across All UK Sites and TheilSen Fit (% per yr)

Figure 4: Overall NOx Trend across All UK Sites and TheilSen Fit (% per yr)

Figure 5: Significance of NO₂ Trends at All UK Sites

Figure 6: Significance of NOx Trends at All UK Sites

Figure 7: Significance of NO₂ and NO_x Trends at All UK Roadside Sites

Figure 8: Significance of NO₂ and NO_x Trends at All UK Urban Sites

Figure 9: Significance of NO₂ and NOx Trends at All UK Rural Sites

Figure 10: Significance of NO₂ Trends at All UK Sites

Figure 11: Significance of NOx Trends at All UK Sites

Figure 12: Overall NO₂ Trend across All UK Road Sites and SmoothTrend Fit

Figure 13: Overall NO₂ Trend across All UK Urban Sites and SmoothTrend Fit

Figure 14: Overall NO₂ Trend across All UK Rural Sites and SmoothTrend Fit

Figure 15: Overall NOx Trend across All UK Road Sites and SmoothTrend Fit

Figure 16: Overall NOx Trend across All UK Urban Sites and SmoothTrend Fit

Figure 17: Overall NOx Trend across All UK Rural Sites and SmoothTrend Fit

Figure 18: Overall NO₂ Trend across All UK Road Sites and TheilSen Fit (% per yr)

Figure 19: Overall NO₂ Trend across All UK Urban Sites and TheilSen Fit (% per yr)

Figure 20: Overall NO₂ Trend across All UK Rural Sites and TheilSen Fit (% per yr)

Figure 21: Overall NOx Trend across All UK Road Sites and TheilSen Fit (% per yr)

Figure 22: Overall NOx Trend across All UK Urban Sites and TheilSen Fit (% per yr)

Figure 23: Overall NOx Trend across All UK Rural Sites and TheilSen Fit (% per yr)

Figure 24 Significance of NO₂ Trends at All UK Sites and for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales

Contains Ordnance Survey data © Crown copyright and database right 2018.

Figure 25: Significance of NOx Trends at All UK Sites and for 3 Areas 1) Scotland and Northern Ireland, 2) Central & Northern England + North Wales, 3) Southern England and Southern Wales

Contains Ordnance Survey data © Crown copyright and database right 2018.

Figure 26: Overall NO₂ Trend across All Sites in Scotland and Northern Ireland, with TheilSen Fit (% per yr)

Figure 27: Overall NO₂ Trend across All Sites in Central and Northern England and Northern Wales, with TheilSen Fit (% per yr)

Figure 28: Overall NO₂ Trend across All Sites in Southern England and Southern Wales, with TheilSen Fit (% per yr)

Figure 29: Overall NOx Trend across All Sites in Scotland and Northern Ireland, with TheilSen Fit (% per yr)

Figure 30: Overall NOx Trend across All Sites in Central and Northern England and Northern Wales, with TheilSen Fit (% per yr)

Figure 31: Overall NOx Trend across All Sites in Southern England and Southern Wales, with TheilSen Fit (% per yr)

Figure 32: Significance of NO₂ Trends at All Sites in London and SE England

Contains Ordnance Survey data © Crown copyright and database right 2018.

Figure 33: Significance of NO_x Trends at All Sites in London and SE England

Contains Ordnance Survey data © Crown copyright and database right 2018.

7 References

AQEG (2014) Nitrogen Dioxide in the UK, report of the Air Quality Expert Group, April 2004, Available at: <u>https://uk-air.defra.gov.uk/library/ageg/publications</u>

Carslaw, D., Beevers, S., Westmoreland, E. and Williams, M. (2011) Trends in NOx and NO₂ emissions and ambient measurements in the UK, Available at: <u>uk-air.defra.gov.uk/reports/cat05/1108251149_110718_AQ0724_Final_report.pdf</u>.

Carslaw, D. and Rhys-Tyler, G. (2013) *Remote sensing of NO2 exhaust emissions from road vehicles*, Available at: <u>http://uk-air.defra.gov.uk/assets/documents/reports/cat05/1307161149_130715_DefraRemoteSensingReport_Final.pdf</u>.

Carslaw D. C. and Ropkins, K. (2012) openair - An R package for air quality data analysis, Environmental Modelling & Software, 52-61, Vol 27-28

Font, A. and Fuller, G. (2015) Roadside air quality trends in London – identifying the outliers Part 1, King's College London. Available at: <u>http://content.tfl.gov.uk/roadside-air-guality-trends-in-london-identifying-outliers-part-1.pdf</u>

8 Appendices

I

A1	Included sites	. 35
A2	Plots for Individual Sites	. 46

A1 Included sites

1

A1.1 Table A1.1 is a list of the sites included in the analyses set out in this report, together with the Network that they are part of and the categorisation by site type and geographic area. Table A1.2 is a list of the sites excluded from further analysis.

Name	Code	Network	Туре	Category	Area ^a
Aberdeen	ABD	AURN	Urban Background	Urban	1
Aston Hill	AH	AURN	Rural Background	Rural	3
Barnsley Gawber	BAR3	AURN	Urban Background	Urban	2
Bath Roadside	BATH	AURN	Roadside	Road	3
Belfast Centre	BEL2	AURN	Urban Background	Urban	1
Birmingham Tyburn	BIR1	AURN	Urban Background	Urban	3
Blackpool Marton	BLC2	AURN	Urban Background	Urban	2
Bournemouth	BORN	AURN	Urban Background	Urban	3
Brighton Preston Park	BRT3	AURN	Urban Background	Urban	3
Bush Estate	BUSH	AURN	Rural Background	Rural	1
Cambridge roadside	CAM	AURN	Roadside	Road	2
Camden Kerbside	CA1	AURN	Kerbside	Road	3
Canterbury	CANT	AURN	Urban Background	Urban	3
Cardiff Centre	CARD	AURN	Urban Background	Urban	3
Derry	DERY	AURN	Urban Background	Urban	1
Dumfries	DUMF	AURN	Roadside	Road	1
Edinburgh St Leonards	ED3	AURN	Urban Background	Urban	1
Eskdalemuir	ESK	AURN	Rural Background	Rural	1
Exeter Roadside	EX	AURN	Roadside Road		3
Glasgow Kerbside	GLA4	AURN	Kerbside	Road	1
Glazebury	GLAZ	AURN	Rural Background	Rural	2
Harwell	HAR	AURN	Rural Background	Rural	3
High Muffles	НМ	AURN	Rural Background	Rural	2
Hull Freetown	HL2	AURN	Urban Background	Urban	2
Inverness	INV2	AURN	Roadside	Road	1
Ladybower	LB	AURN	Rural Background	Rural	2
Leamington Spa	LEAM	AURN	Urban Background	Urban	3
Leeds Centre	LEED	AURN	Urban Background Urban		2
Leominster	LEOM	AURN	Suburban Urban		3
Liverpool Speke	LVP	AURN	Urban Background Urban		2
London Bexley	BEX	AURN	Suburban Urban		3
London Bloomsbury	CLL2	AURN	Urban Background	Urban	3

Table A1.1 Sites Included in the Analyses and their Categorisation

Name	Code	Network	Туре	Category	Area ^a
London Eltham	LON6	AURN	Suburban	Urban	3
London Harlington	HRL	AURN	Urban Background	Urban	3
London Hillingdon	HIL	AURN	Roadside	Road	3
London N. Kensington	KC1	AURN	Urban Background	Urban	3
London Teddington	TED	AURN	Urban Background	Urban	3
London Westminster	HORS	AURN	Urban Background	Urban	3
Lullington Heath	LH	AURN	Rural Background	Rural	3
Manchester Piccadilly	MAN3	AURN	Urban Background	Urban	2
Manchester South	MAN4	AURN	Suburban	Urban	2
Market Harborough	MKTH	AURN	Rural Background	Rural	2
Middlesbrough	MID	AURN	Urban Background	Urban	2
Narberth	PEMB	AURN	Rural Background	Rural	3
Newcastle Centre	NEWC	AURN	Urban Background	Urban	2
Nottingham Centre	NOTT	AURN	Urban Background	Urban	2
Oxford Centre Road	OX	AURN	Roadside	Road	3
Plymouth Centre	PLYM	AURN	Urban Background	Urban	3
Portsmouth	PMTH	AURN	Urban Background	Urban	3
Preston	PRES	AURN	Urban Background	Urban	2
Reading New Town	REA1	AURN	Urban Background	Urban	3
Rochester Stoke	ROCH	AURN	Rural Background Rural		3
Sheffield Tinsley	SHE	AURN	Urban Background Urba		2
Southampton Centre	SOUT	AURN	Urban	Urban	3
Southend-on-Sea	SEND	AURN	Urban	Urban	3
Stoke-on-Trent Centre	STOK	AURN	Urban	Urban	2
St Osyth	OSY	AURN	Rural Background	Rural	3
Sunderland Silksworth	SUN2	AURN	Urban	Urban	2
Thurrock	THUR	AURN	Urban	Urban	3
Tower Hamlets Roadside	TH2	AURN	Roadside	Road	3
Wicken Fen	WFEN	AURN	Rural Background R		2
Wigan Centre	WIG5	AURN	Urban Urban		2
Wrexham	WREX	AURN	Roadside Road		2
Yarner Wood	YW	AURN	Rural Background	Rural	3
Barking and Dagenham – Rush Green	BG1	KCL	Suburban	Urban	3

Name	Code	Network	Туре	Category	Area ^a
Bexley - Belvedere	BX2	KCL	Suburban	Urban	3
Bexley – Slade Green	BX1	KCL	Suburban	Urban	3
Brent - Ikea	BT4	KCL	Roadside	Road	3
Brentwood – Brentwood Town Hall	BW1	KCL	Urban	Urban	3
Camden – Swiss Cottage	CD1	KCL	Kerbside	Road	3
City of London – Sir John Cass School	СТЗ	KCL	Urban	Urban	3
Croydon - Norbury	CR5	KCL	Kerbside	Road	3
Ealing - Hanger Lane Gyratory	EA6	KCL	Roadside	Road	3
Ealing - Southall	EA7	KCL	Urban	Urban	3
Enfield – Derby Road	EN4	KCL	Roadside	Road	3
Greenwich and Bexley - Falconwood	GB6	KCL	Roadside	Road	3
Greenwich - A206 Burrage Grove	GN0	KCL	Roadside	Road	3
Greenwich - Blackheath	GR7	KCL	Roadside	Road	3
Greenwich – Millennium Village	GN2	KCL	Urban	Urban	3
Greenwich – Plumstead High Street	GN3	KCL	Roadside	Road	3
Greenwich – Westhorne Avenue	GR9	KCL	Roadside	Road	3
Greenwich – Woolwich Flyover	GR8	KCL	Roadside	Road	3
Hackney – Old Street	HK6	KCL	Roadside	Road	3
Harrow – Pinner Road	HR2	KCL	Roadside	Road	3
Harrow - Stanmore	HR1	KCL	Urban	Urban	3
Havering - Rainham	HV1	KCL	Roadside	Road	3
Havering - Romford	HV3	KCL	Roadside	Road	3
Islington – Holloway Road	IS2	KCL	Roadside	Road	3
Kensington and Chelsea – Cromwell Road	KC2	KCL	Roadside	Road	3
Kensington and Chelsea – Kings Road	KC4	KCL	Roadside	Road	3
Kensington and Chelsea - Knightsbridge	КСЗ	KCL	Roadside	Road	3

Name	Code	Network	Туре	Category	Area ^a
Lambeth - Bondway Interchange	LB5	KCL	Roadside	Road	3
Lewisham - Catford	LW1	KCL	Urban	Urban	3
Redbridge – Gardner Close	RB4	KCL	Roadside	Road	3
Reigate and Banstead - Horley	RG1	KCL	Suburban	Urban	3
Reigate and Banstead – Horley South	RG2	KCL	Suburban	Urban	3
Reigate and Banstead – Poles Lane	RG3	KCL	Rural Background	Rural	3
Richmond Upon Thames - Castelnau	RI1	KCL	Roadside	Road	3
Richmond Upon Thames – Barnes Wetlands	RI2	KCL	Suburban	Urban	3
Sevenoaks – Bat and Ball	ZV2	KCL	Roadside	Road	3
Sevenoaks – Greatness Park	ZV1	KCL	Urban	Urban	3
Sutton - Carshalton	ST3	KCL	Suburban	Urban	3
Sutton - Wallington	ST4	KCL	Kerbside	Road	3
Thurrock - London Road (Grays)	TK1	KCL	Urban	Urban	3
Thurrock – Standford-le- Hope	ТКЗ	KCL	Roadside	Road	3
Westminster – Horseferry Road	WM0	KCL	Urban	Urban	3
Windsor and Maidenhead – Frascati Way	MW1	KCL	Roadside	Road	3
Westminster – Marylebone Road	MY1	KCL	Kerbside	Road	3
Wandsworth – Wandsworth Town Hall	WA2	KCL	Urban	Urban	3
Chatham Roadside	CHAT	Kent Air	Roadside	Road	3
Dartford Bean Interchange Roadside	DTBI	Kent Air	Roadside	Road	3
Dartford St Clements Roadside	DSTC	Kent Air	Roadside	Road	3
Dartford Town Centre Roadside	DTTC	Kent Air	Roadside Road		3
Gravesham A2 Roadside	GRA2	Kent Air	Roadside	Road	3
Gravesham Industrial Background	GRAI	Kent Air	Urban	Urban	3

Name	Code	Network	Туре	Category	Area ^a
Maidstone A229 Kerbside	MSA2	Kent Air	Kerbside	Road	3
Maidstone Rural	MSR	Kent Air	Rural Background	Rural	3
Swale Ospringe Roadside 2	SWAL	Kent Air	Roadside	Road	3
Thanet Airport	THA	Kent Air	Urban	Urban	3
Thanet Ramsgate Roadside	THR	Kent Air	Roadside	Road	3
Tunbridge Wells A26 Roadside	TUNB	Kent Air	Roadside	Road	3
Aberdeen Anderson Dr	ABD1	SAQ	Roadside	Road	1
Aberdeen Union Street Roadside	ABD3	SAQ	Roadside	Road	1
Dundee Seagate	DUN5	SAQ	Kerbside	Road	1
Dundee Whitehall Street	DUN7	SAQ	Roadside	Road	1
East Dunbartonshire Bearsden	EDB2	SAQ	Roadside	Road	1
East Dunbartonshire Bishopbriggs	EDB1	SAQ	Roadside	Road	1
Edinburgh Gorgie Road	ED5	SAQ	Roadside	Road	1
Fife Cupar	CUPA	SAQ	Roadside	Road	1
Fife Dunfermline	DUNF	SAQ	Roadside	Road	1
Fort William	FW	SAQ	Suburban	Urban	1
Glasgow Anderston	GLA5	SAQ	Urban	Urban	1
Glasgow Byres Road	GLA6	SAQ	Roadside	Road	1
Glasgow Waulkmill Glen Reservoir	GLA7	SAQ	Rural Background	Rural	1
Perth Atholl Street	PET2	SAQ	Roadside	Road	1
Perth High Street	PETH	SAQ	Roadside	Road	1
West Dunbartonshire Clydebank	WDBWA Q3	SAQ	Roadside	Road	1
Chichester - A27 Chichester Bypass	CI1	Sussex Air	Roadside	Road	3
Crawley – Gatwick Airport	CA2	Sussex Air	Urban	Urban	3
Hastings - Bulverhythe	HT1	Sussex Air	Roadside	Road	3
Horsham – Park Way	HO2	Sussex Air	Roadside	Road	3
Abingdon Stert Street	ABIN	UKAQ	Roadside Road		3
Castlereagh Dundonald	CAST	UKAQ	Roadside	Road	1
East Hampshire Bordon	EHAM	UKAQ	Roadside	Road	3

Name	Code	Network	Туре	Category	Area ^a
London Haringey Roadside AURN	LHRD	UKAQ	Roadside	Road	3
Northallerton South Parade	NSPA	UKAQ	Roadside	Road	2
North Down Holywood A2	NDHW	UKAQ	Roadside	Road	1
Norwich Castle Meadow	NCMD	UKAQ	Roadside	Road	2
Preston Meadow Street Ringway	PMSR	UKAQ	Roadside	Road	2
Surrey Heath Camberley NOx	SHCA	UKAQ	Roadside	Road	3
Chepstow A48	CHEP	WAQ	Roadside	Road	3
Cwmbran	CWMB	WAQ	Urban	Urban	3
Newport St Julian's Comp School	NEWP	WAQ	Urban	Urban	3
Rhondda-Cynon-Taf Broadway	RHON	WAQ	Roadside	Road	3
Swansea Hafod DOAS	SWHD	WAQ	Roadside	Road	3
Swansea Morriston Roadside	SWMR	WAQ	Roadside	Road	3

Area – (1) Scotland and Northern Ireland, (2) Central & Northern England + North Wales, (3) Southern England and Southern Wales

Name	Code	Network	Туре
Coventry Memorial Park	COV3	AURN	Urban
London Cromwell Road 2	CRD2	AURN	Roadside
Scunthorpe Town AURN	SCN2	AURN	Industrial
Sibton	SIB	AURN	Rural Background
Strathvaich	SV	AURN	Rural Background
Wirral Tranmere	TRAN	AURN	Urban
Brent Neasden Lane	BT5	KCL	Industrial
Camden – Shaftesbury Avenue	CD3	KCL	Roadside
City of London - Walbrook Wharf	CT6	KCL	Roadside
Croydon – George Street	CR4	KCL	Roadside
Ealing Horn Lane	EA8	KCL	Industrial
Mole Valley – Dorking	MV3	KCL	Urban
Richmond Upon Thames – Ntl Physical Lab	TD0	KCL	Suburban
Tower Hamlets - Blackwall	TH4	KCL	Roadside
Westminster - Oxford Street	WM6	KCL	Kerbside
Aberdeen King Street	AD1	SAQ	Roadside
Aberdeen Market Street 2	ABD0	SAQ	Roadside
Aberdeen Wellington Road	ABD8	SAQ	Roadside
Dundee Broughty Ferry Road	DUN4	SAQ	Industrial
East Ayrshire Kilmarnock	KILM	SAQ	Urban
East Dunbartonshire Kirkintilloch	EDB3	SAQ	Roadside
East Lothian Musselburgh N High St	MUSS	SAQ	Roadside
Edinburgh Salamander St	ED8	SAQ	Roadside
Edinburgh St John's Road	ED1	SAQ	Kerbside

Name	Code	Network	Туре
Falkirk Haggs	FAL5	SAQ	Roadside
Falkirk Hope St	FAL3	SAQ	Roadside
Falkirk West Bridge Street	FAL6	SAQ	Roadside
Fife Kirkcaldy	KIR	SAQ	Roadside
Fife Rosyth	ROSY	SAQ	Roadside
Grangemouth Moray	GRA2	SAQ	Urban
North Ayrshire Irvine High St	IRV	SAQ	Kerbside
N Lanarkshire Croy	NL4	SAQ	Roadside
N Lanarkshire Moodiesburn	NL9	SAQ	Roadside
N Lanarkshire Shawhead Coatbridge	NL7	SAQ	Roadside
Paisley Gordon Street	PAI3	SAQ	Roadside
Peebles	PEEB	SAQ	Suburban
South Lanarkshire East Kilbride	EK0	SAQ	Roadside
Stirling Craig's Roundabout	STRL	SAQ	Roadside
West Lothian Linlithgow High Street	LING	SAQ	Roadside
West Lothian Broxburn	BRX	SAQ	Roadside
Chichester - Orchard Street	CI4	Sussex Air	Roadside
Eastbourne - Devonshire Park	EB1	Sussex Air	Urban
Eastbourne - Holly Place	EB3	Sussex Air	Urban
Horsham – Cowfold	HO5	Sussex Air	Roadside
Horsham – Storrington	HO4	Sussex Air	Roadside
Lewes - West Street	LS5	Sussex Air	Roadside
Rother - De La Warr Road	RY2	Sussex Air	Roadside
Worthing - Grove Lodge	WT2	Sussex Air	Roadside
Blackburn Accrington Road AURN	BLAC	UKAQ	Roadside

Name	Code	Network	Туре
Breckland East Wretham	BREC	UKAQ	Rural Background
Cannock A5190 Roadside AURN	CANN	UKAQ	Roadside
East Staffordshire Derby Turn	ESTAF	UKAQ	Roadside
Elmbridge Hampton Court Parade	ELMH	UKAQ	Roadside
Elmbridge Weybridge High St	ELMW	UKAQ	Roadside
Gedling Daybrook	GEDL	UKAQ	Roadside
Hull Holderness Road AURN	HULL	UKAQ	Roadside
Kings Lynn Gaywood	KLGW	UKAQ	Roadside
Kings Lynn South Gates	KLSG	UKAQ	Roadside
Lancaster Cable Street	LCST	UKAQ	Roadside
Lancaster Dalton Square	LDSQ	UKAQ	Roadside
London Haringey Priory Park South AURN	LHPP	UKAQ	Urban
Luton A505 Roadside AURN	LUA5	UKAQ	Roadside
Newcastle Cradlewell Roadside AURN	NCRD	UKAQ	Roadside
Newcastle Pilgrim Street	NPST	UKAQ	Roadside
Norwich Lakenfields AURN	NLKF	UKAQ	Urban
North Lincs Killingholme Roadside	NLKR	UKAQ	Urban
Nottingham Carter Gate	NOCG	UKAQ	Roadside
Nottingham Lace Street	NOLS	UKAQ	Roadside
Nottingham St Andrews Road	NOSA	UKAQ	Roadside
Nottingham Western Boulevard AURN	NOWB	UKAQ	Kerbside
Oxford St Ebbes AURN	OXSE	UKAQ	Urban
Rushcliffe A52 Stragglethorpe Road	RA52S	UKAQ	Roadside
Rushcliffe Trent Bridge Roadside	RTBR	UKAQ	Roadside
Sandy Roadside AURN	SAND	UKAQ	Roadside

Name	Code	Network	Туре
South Staffordshire Penkridge	SSTA	UKAQ	Roadside
South Tyneside Boldon Lane	STBL	UKAQ	Roadside
South Tyneside Edinburgh Road	STER	UKAQ	Roadside
South Tyneside Tyne Dock	STTD	UKAQ	Industrial
St. Helens Borough Road	STBR	UKAQ	Roadside
St. Helens Linkway	STHL	UKAQ	Roadside
St. Helens Newton Southworth Road	STHN	UKAQ	Roadside
St. Helens Newton-le-Willows High Street	STHW	UKAQ	Roadside
Sunderland Wessington Way AURN	SUNW	UKAQ	Roadside
Swaffham	SWAF	UKAQ	Roadside
Warrington AURN	WARR	UKAQ	Urban
Warrington Chester Road	WARC	UKAQ	Roadside
Warrington Parker St	WARP	UKAQ	Roadside
Widnes Milton Road AURN	WMRD	UKAQ	Rural Background
Winchester Chesil Street	WINC	UKAQ	Roadside
Winchester St Georges Street	WING	UKAQ	Roadside
Marchlyn Mawr	MARCH	WAQ	Rural Background

A2 Plots for Individual Sites

A2.1 This appendix sets out the TheilSen plots for the individual sites included in the analyses presented in this report. The numbers at the top of each graph show the trend and the confidence interval, and the significance of the trend, as follows: *** for p=0.001, ** for p=0.01, * for p=0.05 and ⁺ for p=0.1. The trends are shown as % per year.

Road Sites NO₂

1

Year

2006 2008 2010 2012 2014 2016

l

Rural Sites NOx

